![]() 半導體用黏著薄膜、複合薄片及使用此等之半導體晶片的製造方法
专利摘要:
提供於低溫下可貼附至半導體晶圓之同時,一邊充分抑制晶片裂痕和膨脹的發生,一邊可由半導體晶片以良好產率取得半導體晶片的半導體用黏著薄膜。含有可藉由含有下述化學式(I)所示之4,4’-氧鄰苯二甲酸二酐之四羧酸二酐、與含有下述一般式(II)所示之矽氧烷二胺之二胺反應所得之聚醯亞胺樹脂,且可於100℃以下貼附於半導體晶圓之半導體用黏著薄膜。□ 公开号:TW201302965A 申请号:TW101122069 申请日:2008-04-03 公开日:2013-01-16 发明作者:Yuuki Nakamura;Tsutomu Kitakatsu;Youji Katayama;Keiichi Hatakeyama 申请人:Hitachi Chemical Co Ltd; IPC主号:C09J183-00
专利说明:
半導體用黏著薄膜、複合薄片及使用此等之半導體晶片的製造方法 本發明係關於半導體用黏著薄膜、複合薄片及使用此等之半導體晶片的製造方法。 將半導體晶片裝配於支持構材時,作為接黏半導體晶片與支持構材的晶粒黏著(Die Bonding)材料,自以往主要使用銀漿料。但是隨著半導體晶片的小型化、高性能化、及所使用支持構材的小型化、細密化,使得使用銀漿料的方法中,起因於漿料的滲出、和半導體晶片的傾斜,令金屬絲黏著時發生狀況的問題顯著化。因此,近年來係使用黏著薄膜(半導體用接黏薄膜)代替銀漿料。 使用黏著薄膜取得半導體裝置的方法係有個片貼附方式及晶圓裏面貼附方式。 個片貼附方式中,由捲軸狀的黏著薄膜以裁剪或穿孔切出個片,並將此黏著薄膜的個片黏著至支持構材。透過黏著至支持構材的黏著薄膜,將經由另外切割步驟所個片化的半導體晶片接合至支持構件。其後,視需要經過金屬絲黏著步驟、封合步驟等取得半導體裝置。但是,個片貼附方式之情形,由於必須具有將黏著薄膜切出個片並黏著至支持構材的專用組裝裝置,故比使用銀漿料的方法具有製造費用變高的問題。 晶圓裏面貼附方式中,首先,於半導體晶圓的裏面依序貼合黏著薄膜及切割膠帶。其次,將半導體晶圓切割並分割成複數的半導體晶片,並且將黏著薄膜於各半導體晶片處切斷。其後,將半導體晶片與其裏面所層合的黏著薄膜共同抽起,透過黏著薄膜將半導體晶片接合至支持構材。其後,再經過加熱、硬化、金屬絲黏著等之步驟取得半導體裝置。晶圓裏面貼附方式之情形,並不需要將黏著薄膜個片化用的組裝裝置,將先前之銀漿料用之組裝裝置就其原樣或以附加熱盤等之改良一部分裝置即可使用。因此,於使用黏著薄膜之方法中,被注目為製造費用較為廉價的方法。 另一方面,近年來,作為切割半導體晶圓的方法,已提案藉由對半導體晶圓照射雷射光,令半導體晶圓內部選擇性形成改質部,並且沿著改質部切斷半導體晶圓之Stelus切割方法(專利文獻1、2)。此方法中,例如,將切割膠帶拉伸以對半導體晶圓負荷以應力,沿著改質部將半導體晶圓分割成複數的半導體晶片。 專利文獻1:特開2002-192370號公報 專利文獻2:特開2003-338467號公報 上述之晶圓裏面貼附方式之情形,於半導體晶圓切割時亦必須令黏著薄膜同時切斷。但是,若以使用鑽石刀之一般切割方法將半導體晶圓及黏著薄膜同時切斷,則在切斷後之半導體晶片側面發生龜裂(晶片龜裂),於切斷面中黏著薄膜為劈裂掀起且具有多發生毛邊的問題。若存在此晶片龜裂及毛邊,則在抽起半導體晶片時易將半導體晶片割傷,產率降低。 於是,為了抑制晶片龜裂及毛邊的發生,本發明者等人進行檢討關於包含準備一層合體之步驟,其係依半導體晶圓、半導體用黏著薄膜及切割膠帶之順序層合,且於半導體晶圓被分割為複數的半導體晶片的同時,以半導體用黏著薄膜的厚度方向之至少一部分不被切斷而殘留之方式,由半導體晶圓側形成切口、和分割步驟,其係藉由使切割膠帶於與複數的半導體晶片互為遠離之方向上進行延伸,而沿著切口分割半導體用黏著薄膜的方法。 然而,使用先前的半導體用黏著薄膜,根據上述方法進行切割時,得知具有難以沿著切口將半導體用黏著薄膜完全分斷的問題。 又,若根據上述之Stelus切割,則期待隨著切割所發生的晶片龜裂及毛邊被抑制至某程度。但,以雷射加工於半導體晶圓上形成改質部後,將切割膠帶拉伸分割半導體晶圓之方法的情形,亦明瞭僅以切割膠帶的拉伸難以完全分斷半導體用黏著薄膜,以良好產率取得半導體晶片於實際上為困難的。 更且,於使用形成切口之層合體的方法和以Stelus切割之方法中,藉由令黏著薄膜含有大量的填充物,使黏著薄膜易斷裂,某程度抑制毛邊的發生,但此時具有難在低溫下將黏著薄膜貼附至半導體晶圓的問題。為了抑制半導體晶圓的彎曲和因各構材的熱履歷所引起的損傷等,乃期望將黏著薄膜儘可能於低溫下貼附至半導體晶圓。 本發明為鑑於此類情事而完成者,其目的為在於提供可在低溫下貼附至半導體晶圓,可充分抑制晶圓龜裂及毛邊之發生,並且可由半導體晶圓以良好產率取得半導體晶片的半導體用黏著薄膜。又,本發明為以提供使用此半導體用黏著薄膜,充分抑制晶片龜裂及毛邊之發生,並且可由半導體晶圓以良好產率取得半導體晶片的方法為其目的。 於一個態樣中,本發明係關於可在100℃以下貼附至半導體晶圓的半導體用黏著薄膜。本發明之半導體用黏著薄膜,係含有藉由四羧酸二酐與二胺之反應所得之聚醯亞胺樹脂,其中,上述四羧酸二酐係含有全體比例為50質量%以上之以下述化學式(I)所示之4,4’-氧鄰苯二甲酸二酐,而上述二胺係含有全體比例為30質量%以上之下述一般式(II)所示之矽氧烷二胺。式(II)中,R表示碳數1~5之烷基、碳數1~5之烷氧基,苯基或苯氧基,且同一分子中之複數的R可相同或相異,n及m分別獨立地表示1~3之整數。 上述本發明之半導體用黏著薄膜,藉由採用上述特定之聚醯亞胺樹脂,可在低溫下貼附至半導體晶圓,同時在拉伸時完全無毛邊並且易於完全分斷。其結果,使用此半導體用黏著薄膜,可充分抑制晶片龜裂及毛邊之發生,並可由半導體晶圓以良好產率取得半導體晶片。 上述聚醯亞胺樹脂的玻璃轉化溫度較佳為30℃以上80℃以下。玻璃轉化溫度若在此範圍內,則在低溫下貼附至半導體晶圓為特別容易,又,黏著薄膜為於室溫下無黏、或具有適度黏度者,於作業性、操作性方面亦為有利。 本發明之半導體用黏著薄膜為更含有熱硬化性成分及填充物。此時,填充物的含量為相對於該半導體用黏著薄膜之質量未達30質量%為佳。藉由壓低填充物之含量至某程度,則可在低溫下更加容易貼附至半導體晶圓,又,更加抑制迴流龜裂的發生。 於另一態樣中,本發明係關於具備上述本發明之半導體用黏著薄膜、與層合於該半導體用黏著薄膜之一側面上之切割膠帶的複合薄片。藉由使用此複合薄片,則可以簡略之步驟更有效率地取得半導體晶片及半導體裝置。 如上述之本發明的半導體用黏著薄膜或複合薄片,於如下述之本發明半導體晶片的製造方法中適於使用。 本發明之半導體晶片的製造方法為具備準備一層合體之步驟,其係依半導體晶圓,上述本發明之半導體用黏著薄膜及切割膠帶之順序層合,且於半導體晶圓被分割為複數的半導體晶片的同時,以半導體用黏著薄膜的厚度方向之至少一部分不被切斷而殘留之方式,由半導體晶圓側形成切口、和分割步驟,其係藉由使切割膠帶於與複數的半導體晶片互為遠離之方向上進行拉伸,而沿著切口分割半導體用黏著薄膜。 本發明之半導體晶片的製造方法亦具備準備一層合體之步驟,其係依半導體晶圓,上述本發明之半導體用黏著薄膜及切割膠帶之順序層合,且沿著將半導體晶圓劃分成複數的半導體晶片之線,藉由雷射加工而於半導體晶圓上形成改質部、和分割步驟,其係藉由使切割膠帶於與複數的半導體晶片互為遠離之方向上進行拉伸,而於分割半導體晶圓為複數的半導體晶片之同時,沿著改質部分割半導體用黏著薄膜。 若根據上述本發明之製造方法,可充分抑制晶片龜裂及毛邊的發生,並可由半導體晶圓以良好產率取得半導體晶片。 若根據本發明,提供可於低溫下貼附至半導體晶圓,可充分抑制晶片龜裂及毛邊的發生,並可由半導體晶圓以良好產率取得半導體晶片的半導體用黏著薄膜。又,本發明之半導體用黏著薄膜為耐熱性(高溫下之高黏著性及耐迴流龜裂性等)、及耐濕信賴性方面亦優良。 若根據本發明之製造方法,則可充分抑制晶片龜裂及毛邊的發生,並可由半導體晶圓以良好產率取得半導體晶片。又,若根據本發明之製造方法,則亦可圖謀提高半導體裝置的加工速度。 以下,詳細說明本發明之適當的實施形態。但,本發明並非被限定於以下之實施形態。 半導體用黏著薄膜 本實施形態之半導體用黏著薄膜可於100℃以下貼附至半導體晶圓。此處,將保持於指定溫度的半導體用黏著薄膜片,視需要一邊加壓一邊貼附至半導體晶圓時,若半導體用黏著薄膜被固定至不會由半導體晶圓自然剝落之程度,則判斷為可貼附。更具體而言,例如於半導體用黏著薄膜與半導體晶圓的界面中剝離強度若為20N/m以上即可。半導體用黏著薄膜,例如,使用設定於100℃以下溫度之熱輥層合器貼附至半導體晶圓。剝離強度的測定為於25℃之氛圍氣中,以拉引角度90°、拉引速度50mm/分鐘進行。例如,經由使用減小填充物含量、具有低Tg(較佳為80℃以下)的聚醯亞胺樹脂,則可取得於100℃以下貼附至半導體晶圓的半導體用黏著薄膜。可將半導體用黏著薄膜貼附至半導體晶圓的溫度較佳為95℃以下,更佳為90℃以下。 本實施形態之半導體用黏著薄膜為含有具有下述一般式(A)所示構造單位的聚醯亞胺樹脂。聚醯亞胺樹脂為例如,包含令四羧酸二酐與二胺反應生成聚醯胺酸的步驟、和由聚醯胺酸生成聚醯亞胺樹脂的步驟之方法取得。此時,式(10)中,R1為來自四羧酸二酐的四價殘基,R2為來自二胺的二價殘基。 取得聚醯亞胺樹脂所用之四羧酸二酐,包含下述化學式(I)所示之4,4’-氧鄰苯二甲酸二酐(以下視情況稱為「ODPA」)。若換言之,聚醯亞胺樹脂為包含下述一般式(I-A)所示之構造單位。式(I-A)中之R2為與式(A)之R2同義。 合成聚醯亞胺樹脂所用之四羧酸二酐中的50質量%以上為ODPA為佳。若ODPA的比例未達50質量%,則黏著薄膜之耐濕性及斷裂性有易降低之傾向。由同樣之觀點而言,ODPA的比例較佳為60質量%以上、更佳為70質量%以上。 四羧酸二酐僅含有ODPA亦可,但亦可再含有ODPA以外的化合物。與ODPA併用的化合物可列舉例如,均苯四甲酸二酐、3,3’,4,4’-聯苯四羧酸二酐、2,2’,3,3’-聯苯四羧酸二酐、2,2-雙(2,3-二羧苯基)鹵素二酐、1,1-雙(2,3-二羧苯基)乙烷二酐、1,1-雙(3,4-二羧苯基)乙烷二酐、雙(2,3-二羧苯基)甲烷二酐、雙(3,4-二羧苯基)甲烷二酐、雙(3,4-二羧苯基)碸二酐、3,4,9,10-苝四羧酸二酐、雙(3,4-二羧苯基)醚二酐、苯-1,2,3,4-四羧酸二酐、3,4,3’,4’-二苯酮四羧酸二酐、2,3,2’,3’-二苯酮四羧酸二酐、2,3,3’,4’-二苯酮四羧酸二酐、1,2,5,6-萘四羧酸二酐、2,3,6,7-萘四羧酸二酐、1,2,4,5-萘四羧酸二酐、1,4,5,8-萘四羧酸二酐、1,2-(伸乙基)雙(偏苯三酸酯酐)、1,3-(三亞甲基)雙(偏苯三酸酯酐)、1,4-(四亞甲基)雙(偏苯三酸酯酐)、1,5-(五亞甲基)雙(偏苯三酸酯酐)、1,6-(六亞甲基)雙(偏苯三酸酯酐)、1,7-(七亞甲基)雙(偏苯三酸酯酐)、1,8-(八亞甲基)雙(偏苯三酸酯酐)、1,9-(九亞甲基)雙(偏苯三酸酯酐)、1,10-(十亞甲基)雙(偏苯三酸酯酐)、1,12-(十二亞甲基)雙(偏苯三酸酯酐)、1,16-(十六亞甲基)雙(偏苯三酸酯酐)、1,18-(十八亞甲基)雙(偏苯三酸酯酐)、2,6-二氯萘-1,4,5,8-四羧酸二酐、2,7-二氯萘-1,4,5,8-四羧酸二酐、2,3,6,7-四氯萘-1,4,5,8-四羧酸二酐、菲-1,8,9,10-四羧酸二酐、吡嗪-2,3,5,6-四羧酸二酐、噻吩-2,3,4,5-四羧酸二酐、2,3,3’,4’-聯苯四羧酸二酐、雙(3,4-二羧苯基)二甲基矽烷二酐、雙(3,4-二羧苯基)甲基苯基矽烷二酐、雙(3,4-二羧苯基)二苯基矽烷二酐、1,4-雙(3,4-二羧苯基二甲基甲矽烷基)苯二酐、1,3-雙(3,4-二羧苯基)-1,1,3,3-四甲基二環己烷二酐、對-伸苯基雙(偏苯三酸酯酐)、伸乙基四羧酸二酐、1,2,3,4-丁烷四羧酸二酐、十氫化萘-1,4,5,8-四羧酸二酐、4,8-二甲基-1,2,3,5,6,7-六氫化萘-1,2,5,6-四羧酸二酐、環戊烷-1,2,3,4-四羧酸二酐、吡咯烷-2,3,4,5-四羧酸二酐、1,2,3,4-環丁烷四羧酸二酐、雙(外-雙環〔2.2.1〕庚烷-2,3-二羧酸酐)碸、雙環〔2.2.2〕辛-7-烯-2,3,5,6-四羧酸二酐、2,2-雙(3,4-二羧苯基)六氟丙烷二酐、2,2-雙〔4-(3,4-二羧苯氧基)苯基〕六氟丙烷二酐、4,4’-雙(3,4-二羧苯氧基)二硫苯二酐、1,4-雙(2-羥基六氟異丙基)苯雙(偏苯三酸酐)、1,3-雙(2-羥基六氟異丙基)苯雙(偏苯三酸酐)、5-(2,5二氧四氫呋喃基)-3-甲基-3-環己烯-1,2-二羧酸二酐及四氫呋喃-2,3,4,5-四羧酸二酐。彼等可單獨或組合使用數種。 取得聚醯亞胺樹脂所用之二胺為包含下述一般式(II)所示之矽氧烷二胺。若換言之,聚醯亞胺樹脂為包含下述一般式(II-A)所示之構造單位。式(II-A)中之R1、n及m為與式(A)之R1、n及m同義。本實施形態之聚醯亞胺樹脂多含有下述一般式(10)所示之構造單位。式(10)之構造單位相當於式(I-A)之構造單位及式(II-A之構造單位的任一者。 上述式中,R表示碳數1~5之烷基、碳數1~5之烷氧基、苯基或苯氧基,且同一分子中之複數的R可相同或相異,n及m分別獨立地表示1~3之整數。R較佳為碳數1~5之烷基,最典型為甲基。n及m為3為佳。 式(II)之矽氧烷二胺的具體例可列舉1,1,3,3-四甲基-1,3-雙(2-胺乙基)二矽氧烷、1,1,3,3-四甲基-1,3-雙(3-胺丙基)二矽氧烷、1,1,3,3-四甲基-1,3-雙(2-胺乙基)二矽氧烷及1,1,3,3-四苯基-1,3-雙(3-胺丙基)二矽氧烷。 合成聚醯亞胺樹脂所用之二胺中之30質量%~100質量%為式(II)之矽氧烷二胺為佳。式(II)之矽氧烷二胺之比例若未達30質量%,則難取得可於100℃以下貼附至半導體晶圓的黏著薄膜,且拉伸黏著薄膜時難以無毛邊斷裂之傾向。由同樣之觀點而言,式(II)之矽氧烷二胺的比例更佳為40質量%以上,再佳為50質量%以上。 合成聚醯亞胺樹脂所用之二胺可僅含有式(II)之矽氧烷二胺,但亦可再含有脂肪族二胺、芳香族二胺、及式(II)之矽氧烷二胺以外之矽氧烷二胺所組成群中選出至少一種之化合物。脂肪族二胺可列舉例如,乙二胺、1,3-二胺基丙烷、1,4-二胺基丁烷、1,5-二胺基戊烷、1,6-二胺基己烷、1,7-二胺基庚烷、1,8-二胺基辛烷、1,9-二胺基壬烷、1,10-二胺基癸烷、及1,12-二胺基十二烷。芳香族二胺可列舉例如,鄰-苯二胺、間-苯二胺、對-苯二胺、3,3’-二胺基二苯醚、3,4’-二胺基二苯醚、4,4’-二胺基二苯醚、3,3’-二胺基二苯基甲烷、3,4’-二胺基二苯基甲烷、4,4’-二胺基二苯基甲烷、3,3’-二胺基二苯基二氟甲烷、3,4’-二胺基二苯基二氟甲烷、4,4’-二胺基二苯基二氟甲烷、3,3’-二胺基二苯碸、3,4’-二胺基二苯碸、4,4’-二胺基二苯碸、3,3’-二胺基二硫苯、3,4’-二胺基二硫苯、4,4’-二胺基二硫苯、3,3’-二胺基二苯酮、3,4’-二胺基二苯酮、4,4’-二胺基二苯酮、2,2-雙(3-胺苯基)丙烷、2-(3-胺苯基)-2-(4’-胺苯基)丙烷、2,2-雙(4-胺苯基)丙烷、2,2-雙(3-胺苯基)六氟丙烷、2-(3-胺苯基)-2-(4’-胺苯基)六氟丙烷、2,2-雙(4-胺苯基)六氟丙烷、1,3-雙(3-胺苯氧基)苯、1,4-雙(3-胺苯氧基)苯、1,4-雙(4-胺苯氧基)苯、3,3’-(1,4-伸苯基雙(1-甲基亞乙基))雙苯胺、3,4’-(1,4-伸苯基雙(1-甲基亞乙基))雙苯胺、4,4’-(1,4-伸苯基雙(1-甲基亞乙基))雙苯胺、2,2-雙(4-(3-胺苯氧基)苯基)丙烷、2,2-雙(4-(4-胺苯氧基)苯基)丙烷、2,2-雙(4-(3-胺苯氧基)苯基)六氟丙烷、2,2-雙(4-(4-胺苯氧基)苯基)六氟丙烷、雙(4-(3-胺苯氧基)苯基)硫、雙(4-(4-胺苯氧基)苯基)硫、雙(4-(3-胺苯氧基)苯基)碸、及雙(4-(4-胺苯氧基)苯基)碸。 與式(II)之矽氧烷二胺併用所得之矽氧烷二胺為例如以下述一般式(III)表示。式(III)中,Q1及Q2分別獨立地表示伸苯基或碳數1~5之伸烷基(但,p為1時為碳數4~5之伸烷基),Q3、Q4、Q5及Q6分別獨立地表示碳數1~5之烷基、碳數1~5之烷氧基、苯基或苯氧基,p為表示1~50之整數。 式(III)中之矽氧烷二胺於p為1時,可為1,1,3,3-四甲基-1,3-雙(4-胺苯基)二矽氧烷、1,1,3,3-四苯氧基-1,3-雙(2-胺乙基)二矽氧烷、1,1,3,3-四甲基-1,3-雙(4-胺丁基)二矽氧烷、及1,3-二甲基-1,3-二甲氧基1,3-雙(4-胺丁基)二矽氧烷,於p為2時,可為1,1,3,3,5,5-六甲基-1,5-雙(4-胺苯基)三矽氧烷、1,1,5,5-四苯基-3,3-二甲基-1,5-雙(3-胺丙基)三矽氧烷、1,1,5,5-四苯基-3,3-二甲氧基-1,5-雙(4-胺丁基)三矽氧烷、1,1,5,5-四苯基-3,3-二甲氧基-1,5-雙(5-胺戊基)三矽氧烷、1,1,5,5-四甲基-3,3-二甲氧基-1,5-雙(2-胺乙基)三矽氧烷、1,1,5,5-四甲基-3,3-二甲氧基-1,5-雙(4-胺丁基)三矽氧烷、1,1,5,5-四甲基-3,3-二甲氧基-1,5-雙(5-胺戊基)三矽氧烷、1,1,3,3,5,5-六甲基-1,5-雙(3-胺丙基)三矽氧烷、1,1,3,3,5,5-六乙基-1,5-雙(3-胺丙基)三矽氧烷、1,1,3,3,5,5-六丙基-1,5-雙(3-胺丙基)三矽氧烷,於p為3~50時,可為下述化學式所示之化合物。其亦可併用二種以上。 由黏著薄膜於室溫下之操作性和黏度強度適切化的觀點而言,聚醯亞胺樹脂之玻璃轉化溫度為30℃以上80℃以下為佳。若聚醯亞胺樹脂的玻璃化溫度為未達30℃,則聚醯亞胺樹脂於室溫下變軟,於操作性,保管安定性上易產生問題。又,聚醯亞胺樹脂之玻璃轉化溫度若超過80℃,則於100℃以下貼附至晶圓有變為困難的傾向。由同樣之觀點而言,聚醯亞胺樹脂之玻璃轉化溫度為40℃以上80℃以下為更佳,且以45℃以上80℃以下為再佳。 由四羧酸二酐及二胺生成聚醯亞胺樹脂的反應為如業所理解般,一般可適當採用聚醯亞胺樹脂之合成反應所採用的條件進行。 半導體用黏著薄膜除了上述聚醯亞胺樹脂,亦可加上含有熱硬化性成分及/或填充物。熱硬化性成分為經由加熱形成三次元網孔構造且硬化之成分,例如,由熱硬化性樹脂和其硬化劑及/或硬化促進劑所構成。經由使用熱硬化性成分,於高溫下之剪切黏著力有變高之傾向。但,若使用熱硬化性成分,則高溫下的剝離黏著力相反地有降低的傾向,故根據使用目的,適當選擇有無使用熱硬化性成分即可。 熱硬化性樹脂的份量,相對於聚醯亞胺樹脂100重量份,較佳為1~100重量份,更佳為1~50重量份。若超過100重量份,則薄膜成形性有降低的傾向。 熱硬化性樹脂較佳為由環氧樹脂、及具有2個熱硬化性醯亞胺基之醯亞胺化合物中選取。 使用作為熱硬化性樹脂的環氧樹脂為具有2個以上環氧基的化合物。由硬化性和硬化物特性之方面而言,以苯酚之縮水甘油醚型的環氧樹脂為佳。苯酚之縮水甘油醚型的環氧樹脂可列舉雙酚A、雙酚AD、雙酚S、雙酚F或鹵化雙酚A與表氯醇的縮合物、苯酚酚醛清漆樹脂的縮水甘油醚、甲酚酚醛清漆樹脂的縮水甘油醚、及雙酚A酚醛清漆的縮水甘油醚。使用環氧當量為100~500的環氧樹脂為佳。 使用環氧樹脂作為熱硬化性樹脂時,其硬化劑可適當使用酚樹脂。酚樹脂的OH當量為50~600為佳。酚樹脂為具有2個以上酚性羥基的化合物。酚樹脂的具體例可列舉苯酚酚醛清漆樹脂、甲酚酚醛清漆樹脂、雙酚A酚醛清漆樹脂、聚-對-乙烯酚、及苯酚芳烷基樹脂。使用酚樹脂時,其份量相對於樹脂100重量份較佳為1~300重量份、更佳為1~150重量份,再佳為1~120重量份。若超過300重量份則硬化性有降低的傾向。 與環氧樹脂組合的硬化劑或硬化促進劑除了酚樹脂以外,例如,可使用咪唑類、雙氰胺衍生物、二羧酸二醯肼、三苯膦、四苯基鏻四苯基硼酸酯、2-乙基-4-甲基咪唑-四苯基硼酸酯、及1,8-二吖雙環〔5.4.0〕十一碳烯-7-四苯基硼酸酯。其亦可併用二種以上。硬化促進劑之份量為相對於環氧樹脂100重量份,較佳為0~50重量份,更佳為0.1~50重量份,再佳為0.1~20重量份。硬化促進劑之份量若超過50重量份,則保存安定性有降低的傾向。 組合使用環氧樹脂、酚樹脂及硬化促進劑時,半導體用黏著薄膜的組成,例如,聚醯亞胺樹脂:100重量份、環氧樹脂:1~100重量份、酚樹脂:相對於環氧樹脂100重量份以1~600重量份、硬化促進劑:相對於環氧樹脂100重量份以0~50重量份。 使用作為熱硬化性樹脂的醯亞胺化合物例為鄰雙馬來醯亞胺苯、間雙馬來醯亞胺苯、對雙馬來醯亞胺苯、1,4-雙(對-馬來醯亞胺枯基)苯、1,4-雙(間-馬來醯亞胺枯基)苯、及下述式(IV)、(V)或(VI)所示之醯亞胺化合物。 式(IV)中,X1表示-O-、-CH2-、-CF2-、-SO2-、-S-、-CO-、-C(CH3)2-或-C(CF3)2-,R11、R12、R13及R14分別獨立地表示氫原子、低烷基、低烷氧基、氟、氯或溴,Z1表示具有乙烯性不飽和雙鍵之二羧酸殘基。 式(V)中,X2表示-O-、-CH2-、-CF2-、-SO2-、-S-、-CO-、-C(CH3)2-或-C(CF3)2-,R15、R16、R17及R18分別獨立地表示氫原子、低烷基、低烷氧基、氟、氯或溴,Z2表示具有乙烯性不飽和雙鍵之二羧酸殘基。 式(VI)中,Z3表示具有乙烯性不飽和雙鍵之二羧酸殘基,r表示0~4之整數。 式(IV)之醯亞胺化合物例如為4,4’-雙馬來醯亞胺二苯醯、4,4’-雙馬來醯亞胺二苯基甲烷、4,4’-雙馬來醯亞胺-3,3’-二甲基-二苯基甲烷、4,4’-雙馬來醯亞胺二苯碸、4,4’-雙馬來醯亞胺二硫苯、4,4’-雙馬來醯亞胺二苯酮、2,2-雙(4-馬來醯亞胺苯基)丙烷、4,4’-雙馬來醯亞胺二苯基氟甲烷、及1,1,1,3,3,3-六氟-2,2-雙(4-馬來醯亞胺苯基)丙烷。 式(V)之醯亞胺化合物例如為雙〔4-(4-馬來醯亞胺苯氧基)苯基〕醚、雙〔4-(4-馬來醯亞胺苯氧基)苯基〕甲烷、雙〔4-(4-馬來醯亞胺苯氧基)苯基〕氟甲烷、雙〔4-(4-馬來醯亞胺苯氧基)苯基〕碸、雙〔4-(3-馬來醯亞胺苯氧基)苯基〕碸、雙〔4-(4-馬來醯亞胺苯氧基)苯基〕硫、雙〔4-(4-馬來醯亞胺苯氧基)苯基〕酮、2,2-雙〔4-(4-馬來醯亞胺苯氧基)苯基〕丙烷、1,1,1,3,3,3-六氟-2,2-雙〔4-(4-馬來醯亞胺苯氧基)苯基〕丙烷。 為了促進此等醯亞胺化合物的硬化,亦可使用自由基聚合啟始劑。自由基聚合啟始劑為過氧化乙醯環己基磺醯、過氧化異丁醯、過氧化苯甲醯、過氧化辛醯。過氧化乙醯、過氧化二枯基、氫過氧化枯烯、及偶氮雙異丁腈等。自由基聚合啟始劑的使用量為相對於醯亞胺化合物100重量份,大約以0.01~1.0重量份為佳。 填充物係在提高B階段狀態之黏著薄膜的斷裂強度及減低拉伸斷裂延伸度、和提高黏著薄膜之操作性、提高熱傳導性、調整熔融黏度,賦予觸變性等為目的而使用。填充物例如使用由銀粉、金粉及銅粉中選出之導電性填充物、和包含無機物質之非金屬系的無機填充物。 構成無機填充物的無機物質可列舉例如,氫氧化鋁、氫氧化鎂、碳酸鈣、碳酸鎂、矽酸鈣、矽酸鎂、氧化鈣、氧化鎂、氧化鋁、氮化鋁、硼酸鋁晶鬚、氮化硼、結晶性二氧化矽、非晶性二氧化矽及銻氧化物。為了提高熱傳導性,以氧化鋁、氮化鋁、氮化硼、結晶性二氧化矽及非晶性二氧化矽為佳。於調整熔融黏度和賦予觸變性之目的中,以氫氧化鋁、氫氧化鎂、碳酸鈣、碳酸鎂、矽酸鈣、矽酸鎂、氧化鈣、氧化鎂、氧化鋁、結晶性二氧化矽、及非晶性二氧化矽為佳。又,為了提高耐濕性,以氧化鋁、二氧化矽、氫氧化鋁、及銻氧化物為佳。亦可併用數種之填充物。 藉由增大填充物的含量,則可令黏著薄膜的斷裂強度上升,提高彈性率、增大韌性。但,若過度增大填充物的含量,則黏著薄膜的黏著性降低,耐迴流龜裂性有降低的傾向。特別,具有如有機基板之凹凸表面的被黏體與半導體晶片接黏使用時,易令黏著層被破壞。又,若增加填充物,則黏著薄膜可貼附至半導體晶圓的溫度有上升的傾向。由此類觀點而言,填充物的含量相對於半導體用黏著薄膜之全質量以未達30質量%為佳,且以未達25質量%為更佳,未達20質量%為再佳。填充物的含量為相對於聚醯亞胺樹脂100重量份以1重量份以上為佳,且以3重量份為更佳。 半導體用黏著薄膜,具有半導體晶片搭載用支持構件搭載半導體晶片時所要求的耐熱性及耐濕性為佳。因此,通過耐迴流龜裂性試驗為佳。可以黏著強度為指標並且評價半導體用黏著薄膜的耐迴流龜裂性。於取得良好之耐迴流龜裂性上,以4×2mm正方的接黏面積將半導體用黏著薄膜黏著至半導體晶圓時,剝離強度初期為1.0kg/cm以上,於85℃/85%之氛圍氣下放置48小時後為0.5kg/cm以上為佳。初期之剝離強度為1.3kg以上為較佳,1.5kg/cm為更佳。於85℃/85%之氛圍氣下放置48小時後的剝離強度為0.7kg/cm以上為較佳,0.8kg/cm以上為更佳。 半導體用黏著薄膜之拉伸斷裂強度較佳為未達5%。又,半導體用黏著薄膜之拉伸斷裂強度,相對於拉伸試驗中最大荷重時的延伸度,較佳為未達110%。經由具有此類拉伸特性,則可令半導體用黏著薄膜於經由拉伸應力斷裂時,斷裂面難被劈裂掀起,且根據後述方法製造半導體晶片時特別顯著抑制毛邊發生。又,半導體用黏著薄膜經由具有此類拉伸特性,則可在少膨脹量下將半導體用黏著薄膜有效且確實地分斷。 若拉伸斷裂延伸度為5%以上,則在完全分斷半導體用黏著薄膜上,必須令切割膠帶的膨脹量增大至普通以上。又,相對於拉伸斷裂延伸度之最大荷重時的延伸度比例為110%以上,則引起屈服狀態長、或者易引起柱頸(necking),此時,半導體用黏著薄膜2具有難以一邊抑制毛邊一邊完全分斷的傾向。 由上述同樣之觀點而言,拉伸斷裂伸度更佳為未達4%,再佳為未達3.5%。同樣地,相對於拉伸斷裂延伸度之最大荷重時的延伸度比率,更佳為未達108%,再佳為未達105%。另外,此比率於拉伸斷裂延伸度與最大荷重時之延伸度為一致時,係為最低值100%。 藉由以上述成分構成半導體用黏著薄膜,並且適當調整各成分之種類及配合量,則可輕易取得具有上述特定拉伸特性的半導體用黏著薄膜。 最大應力、最大荷重延伸度及拉伸斷裂延伸度為使用由B階段狀態之半導體用黏著薄膜中所切出之具有寬5mm、長50mm、厚25μm大小的長方形的試驗片,於25℃之環境下,以下列條件進行拉伸試驗所求出。 拉伸試驗機:SIMADZU製100N Autograph「AGS-100NH」 卡盤間距離(試驗開始時):30mm 拉伸速度:5mm/分鐘 由拉伸試驗所得之應力-歪斜曲線,讀取最大荷重、最大荷重的卡盤間長度、及斷裂時的卡盤間長度,使用此些值與試料剖面積的實測值,根據下述式算出最大應力、最大荷重伸度及拉伸斷裂伸度。 最大應力(Pa)=最大荷重(N)/試料的剖面積(m2) 最大荷重時的延伸度(%)={(最大荷重時的卡盤間長度(mm)-30)/30}×100 拉伸斷裂延伸度(%)={(斷裂時之卡盤間長度(mm)-30)/30}×100 通常,對於複數的試驗片進行測定,並將其平均值記錄為此半導體用黏著薄膜的拉伸特性。由再現性的觀點而言,拉伸試驗為以上述條件進行為佳,但亦可變更成實質上提供同一試驗結果的其他條件。 半導體用黏著薄膜為例如將含有聚醯亞胺樹脂、熱硬化性成分、填充物及將其溶解或分散之有機溶劑的塗佈液(漿狀混合物)塗附至基質薄膜,並以加熱由基質薄膜上之塗佈液中除去有機溶劑的方法則可取得。上述塗佈液為混合各原料,並且適當組合攪拌機、萊卡機、三根輥、球磨等之分散機予以混練之方法則可調製。 有機溶劑若可將材料均勻溶解、混練或分散者則無限制,可列舉例如,二甲基甲醯胺、二甲基乙醯胺、N-甲基吡咯烷酮、二甲基亞碸、二乙二醇二甲醚、甲苯、苯、二甲苯、甲基乙基酮、四氫呋喃、乙基溶纖劑、乙基溶纖劑醋酸酯、丁基溶纖劑及二烷。其可單獨或組合使用二種以上。 基質薄膜若為可承受除去有機溶劑的加熱,則無特別限定。基質薄膜之例可列舉聚酯薄膜、聚丙烯薄膜、聚對苯二甲酸乙二酯薄膜、聚醯亞胺薄膜、聚醚醯亞胺薄膜、聚醚萘甲酸酯薄膜、及甲基戊烯薄膜。此等薄膜亦可將組合二種以上之多層薄膜使用作為基質薄膜。基質薄膜的表面亦可經聚矽氧系、二氧化矽系等之脫模劑等予以處理。有機溶劑除去後,未除去基質薄膜,就其原樣使用作為半導體用黏著薄膜之支持體亦可。 半導體用黏著薄膜為與切割膠帶貼合之複合片狀態下保管及使用亦可。經由使用此類複合片,則可令半導體裝置製造步驟簡略化。 半導體晶片的製造方法 (第一實施形態) 圖1、2、3、4及5為示出第一實施形態之半導體晶片之製造方法的端面圖。本實施形態之半導體晶片的製造方法為具備準備依半導體晶圓1、半導體用黏著薄膜2及切割膠帶3之順序層合的層合體20之步驟(圖1)、和對層合體20由半導體晶圓1側形成切口40之步驟(圖2、3)、和將半導體用黏著薄膜2沿著切口40分割之步驟(圖4)、和將半導體晶片10與半導體用黏著薄膜2同時抽起的步驟(圖5)。上述之實施形態的半導體用黏著薄膜為使用作為半導體用黏著薄膜2。 圖1之層合體20為於半導體晶圓1的裏面,依序貼附半導體用黏著薄膜2及切割膠帶3,或將層合半導體用黏著薄膜2及切割膠帶3的複合片,以半導體用黏著薄膜2為朝向位於半導體晶圓1側貼附至半導體晶圓1裏面之方法而準備。 半導體晶圓1除了單結晶矽以外,使用由多結晶矽、各種陶瓷、鎵砷等之化合物半導體等所構成的晶圓。切割膠帶3,若對於固定用之環具有可固定程度之黏著性,且可將半導體用黏著薄膜2分斷般拉伸者,則無特別限制可使用。例如,氯乙烯系膠帶可使用作為切割膠帶。 將半導體用黏著薄膜2或具有其之複合片貼附至半導體晶圓1時,半導體用黏著薄膜的溫度保持於0~100℃為佳。以此類較低溫下貼附半導體用黏著薄膜2,則可充分抑制半導體晶圓1彎曲、和切割膠帶和底部膠帶因熱履歷所造成的損傷。由同樣之觀點而言,上述溫度更佳為15℃~95℃,再佳為20℃~90℃。 對於層合體20,半導體晶圓1被分割成複數的半導體晶片10,同時令半導體用黏著薄膜2之厚度方向的一部分未被切斷地殘留,使用切割膠帶4由半導體晶圓1側形成切口40(圖2)。若換言之,半導體晶圓1為完完全切斷斷,且半導體晶圓1為沿著切斷線將半導體用黏著薄膜2部分切斷。 圖3為示出層合體20所形成切口40附近的放大端面圖。「部分切斷」為意指半導體用黏著薄膜2的厚度T1及半導體用黏著薄膜2被切入之深度T2為滿足T2/T1<1的關係。T2/T1較佳為1/5~4/5、更佳為1/4~3/4、再佳為1/3~2/3。若T2變小,則半導體用黏著薄膜2沿著切口40分割時有妨礙毛邊發生的傾向,另一方面,即使拉伸切割膠帶3、更且增高抽出半導體晶片10時之突起高度,亦具有難將半導體用黏著薄膜2完全分斷的傾向。又,若T2變大,則即使減少切割膠帶拉伸量(以下視情況稱為「膨脹量」),或者即使減低抽起半導體晶片10時之突起高度,亦具有令型板黏著薄膜易完全分斷的傾向。但,若T2為過度變大,則抑制毛邊的效果變小,半導體裝置製造之產率的提高效果有變小之傾向。 形成切口40後,將切割膠帶3,於與複數的半導體晶片10互為遠離之方向,即沿著切割膠帶3之主面方向(圖2之箭頭方向)拉伸,令半導體用黏著薄膜2被分割(圖4)。其結果,半導體晶片10及具有其上貼附半導體用黏著薄膜2之附有黏著薄膜的半導體晶片,於切割膠帶3呈現排列之狀態。 膨脹量為拉伸後之切割膠帶3的寬度(最大寬度)R1、與初期切割膠帶3之寬度(最大寬度)R0(參照圖2)的差。此膨脹量較佳為2mm~10mm、更佳為2mm~8mm、再佳為2mm~7mm。如本實施形態般,於半導體用黏著薄膜2形成切口時,由於存在切斷的開端,故比後述第二實施形態般未完完全切斷斷半導體用黏著薄膜2之情形,膨脹量更少。 拉伸切割膠帶3後,半導體晶片10為與其裏面貼附的半導體用黏著薄膜2同時被抽起(圖5)。於抽起之半導體晶片10的位置,切割膠帶3與半導體晶片10由反側突起至指定高度為止亦可。被抽起的半導體晶片10,經由使用其裏面貼附之半導體用黏著薄膜2作為黏著材料,搭載至各種支持構材等。關於抽起後的步驟述於後。 (第二實施形態) 圖6、7、8及9為示出第二實施形態之半導體晶片之製造方法的端面圖。本實施形態之方法為具備準備依半導體晶圓1、半導體用黏著薄膜2及切割膠帶3之順序層合的層合體20之步驟(圖6~8)、和將切割膠帶3於與複數的半導體晶片10互為遠離之方向上進行拉伸,而於分割半導體晶圓1為複數的半導體晶片10之同時,分割半導體用黏著薄膜2之步驟(圖9)、和將半導體晶片10與半導體用黏著薄膜2同時抽起的步驟。 準備層合體20的步驟為由藉由雷射加工將半導體晶圓1沿著分隔複數半導體晶片10的線50(以下稱為「分割預定線」),於半導體晶圓1的內部形成改質部1a的步驟(圖6)、於形成有改質部1a之半導體晶圓1貼附半導體用黏著薄膜的步驟(圖7)和於半導體用黏著薄膜2貼附切割膠帶3的步驟(圖8)所構成。 於藉由雷射加工形成改質部1a的步驟中,雷射90為沿著分割預定線50照射(圖6之(a))。該雷射加工,可根據所謂Stelus切割之已知方法所通常採用的條件進行。藉由雷射加工,可在半導體晶圓1的內部形成改質部1a。 其後,如圖7、8所示般將半導體用黏著薄膜2及切割膠帶3依序貼附至半導體晶圓1,取得層合體20。 取得層合體20之步驟並非限於如本實施形態之順序。例如,於半導體晶圓貼附半導體用黏著薄膜後,藉由雷射加工形成改質部亦可。 取得層合體20後,將切割膠帶3於與複數的半導體晶片10互為遠離之方向(圖8(b)之箭頭方向)上進行拉伸,而於分割半導體晶圓1為複數的半導體晶片10之同時,沿著改質部1a分割半導體用黏著薄膜2(圖9)。 若根據本實施形態,半導體晶圓1及半導體用黏著薄膜2未被切割刀所切斷,而經由切割膠帶的拉伸而被分割。若根據此方法,因為不必將半導體晶圓1與半導體用黏著薄膜2以切割刀同時切斷,故可提高半導體晶圓個片化的速度,亦可抑制毛邊的發生。 本實施形態之情形,切割膠帶3的膨脹量較佳為5~30mm、更佳為10~30mm、再佳為10~20mm。若膨脹量為未滿5mm,則半導體晶圓1及半導體用黏著薄膜2具有難以完全分斷的傾向,若超過30mm,則具有易引起沿著分割預定線部分以外之斷裂的傾向。 又,本實施形態之情形,拉伸切割膠帶3的速度(膨脹速度)較佳為10~1000mm/秒鐘,更佳為10~100mm/秒鐘,再佳為10~50mm/秒鐘。若膨脹速度未達10mm/秒鐘,則半導體晶圓1及半導體用黏著薄膜2具有難以完全分斷的傾向,若超過1000mm/秒鐘,則具有易引起沿著分割預定線部分以外之斷裂的傾向。 如上所說明般,可根據第一實施形態或第二實施形態之方法求得,半導體用黏著薄膜2及所抽起的半導體晶片10,例如,構成IC、LSI般的半導體元件。半導體晶片10為例如透過其裏面所貼附的半導體用黏著薄膜2,黏著至支持構件。支持構件可列舉例如由42合金鉛框及銅鉛框等之鉛框、環氧樹脂、聚醯亞胺系樹脂及馬來醯亞胺系樹脂等所形成的樹脂薄膜、玻璃不織布或於玻璃織布含浸環氧樹脂、聚醯亞胺系樹脂及馬來醯亞胺系樹脂等之熱硬化性樹脂並且令其硬化所得的基板、及、玻璃基板及氧化鋁等之陶瓷基板。 半導體晶片彼此間亦可透過半導體用黏著薄膜而黏著。圖10為示出根據方法所得之半導體裝置之一實施形態的剖面圖。圖10所示之半導體裝置100為具備附配線之基材(支持構材)7、和透過半導體用黏著薄膜2黏著至附配線之基材7的半導體晶片10a、和透過半導體用黏著薄膜2黏著至半導體晶片10a的半導體晶片10b。半導體晶片10a及10b為藉由黏著金屬絲8,與附配線之基材7的配線接續。又,半導體晶片10a及10b為藉由將其埋入的封合樹脂層9予以封合。 半導體晶片與支持構件的黏著、及半導體晶片彼此間的黏著,例如,係以半導體晶片與支持構材之間或半導體晶片彼此間夾住半導體用黏著薄膜的狀態,於60~300℃下加熱0.1~300秒鐘進行。 半導體用黏著薄膜2為含有熱硬化性樹脂時,將黏著後的半導體晶片加熱,促進半導體用黏著薄膜對於被黏體的密黏和硬化,並增加接合部的強度為佳。此時之加熱若根據黏著薄膜的組成適當調整即可,通常,60~220℃、0.1~600分鐘。進行樹脂封合時,亦可利用封合樹脂之硬化步驟的加熱。 實施例 以下,列舉實施例更加具體說明本發明。但,本發明不被限定於以下之實施例。 1.半導體用黏著薄膜之製作 實施例1 於具備溫度計、攪拌機及氯化鈣管之500毫升四口燒瓶中,裝入作為二胺的1,3-雙(3-胺丙基)四甲基二矽氧烷(0.1莫耳)、和作為溶劑的N-甲基-2-吡咯烷酮150克,並於60℃中攪拌。二胺溶解後,將1,10-(十亞甲基)雙(偏苯三酸酯二酐)(0.02莫耳)和4,4’-氧鄰苯二甲酸二酐(0.08莫耳)以各少量添加,並於60℃反應3小時。其後,一邊吹入N2氣一邊以170℃加熱,歷3小時令系中的水份與一部分溶劑同時經由共沸除去。除去水所得之聚醯亞胺樹脂的NMP溶液,使用於黏著薄膜的製作。 於上述所得之聚醯亞胺樹脂的NMP溶液(包含100重量份聚醯亞胺樹脂)中,加入甲酚酚醛清漆型環氧樹脂(東都化成製)4重量份、4,4’-〔1-〔4-〔1-(4-羥苯基)-1-甲基乙基〕苯基〕亞乙基〕雙酚(本州化學製)2重量份、四苯基鏻四苯基硼酸酯(東京化成製)0.5重量份。更且,將氮化硼填充物(水島合成鐵製)相對於全固形成分之質量以12質量%、氣溶膠(二氧化矽)填充物R972(日本Aerosil製)相對於全固形成分之質量以3質量%般加入,充分混練取得清漆。將調合的清漆塗佈至已剝離處理完畢的聚對苯二甲酸乙二酯薄膜上,以80℃ 30分鐘、其次以120℃ 30分鐘加熱,其後,於室溫(25℃)下剝離聚對苯二甲酸乙二酯薄膜,取得厚度25μm的黏著薄膜。 實施例2~4 除了將合成聚醯亞胺樹脂時之原料配合比,變更成表1所示之各組成(重量份)以外為同實施例1處理,取得黏著薄膜。 比較例1 除了將原料之配合比,變更成表1所示之組成(重量份)以外為同實施例1處理,取得聚醯亞胺樹脂的NMP溶液。除了使用所得之聚醯亞胺樹脂的NMP溶液,並且令氮化硼填充物的配合比,相對於全固形成分之重量為9質量%,且未使用氣溶膠填充物以外為同實施例1處理,取得黏著薄膜。 比較例2 除了將原料之配合比,變更成表1所示之組成(重量份)以外為同實施例1處理,取得聚醯亞胺樹脂的NMP溶液。除了使用所得之聚醯亞胺樹脂的NMP溶液,並且令氮化硼填充物的配合比,相對於全固形成分之重量為10質量%,且未使用氣溶膠填充物以外為同實施例1處理,取得黏著薄膜。 比較例3 除了令氮化硼填充物的配合比,相對於全固形成分之重量為40質量%,且未使用氣溶膠填充物以外為同實施例1處理,取得黏著薄膜。 比較例4 除了將原料之配合比,變更成表1所示之組成(重量份)以外為同實施例1處理,取得聚醯亞胺樹脂的NMP溶液。除了使用所得之聚醯亞胺樹脂的NMP溶液,並且令氮化硼填充物的配合比,相對於全固形成分之重量為28質量%,且未使用氣溶膠填充物以外為同實施例1處理,取得黏著薄膜。 比較例5 除了令氮化硼填充物的配合比,相對於全固形成分之重量為50質量%,且未使用氣溶膠填充物以外為同實施例1處理,取得黏著薄膜。 比較例6 除了令氮化硼填充物的配合比,相對於全固形成分之重量為57質量%以外為同實施例1處理,取得黏著薄膜。 表1中,原料的縮寫為表示下列之酸酐或二胺。 (酸酐) ODPA:4,4’-氧鄰苯二甲酸二酐(Manac公司製) DBTA:1,10(十亞甲基)雙(偏苯二酸酯二酐)(黑金化成製) BPADA:2,2-雙〔4-(3,4-二羧苯氧基)苯基〕丙烷二酐(黑金化成製) (二胺) LP7100:1,3-雙(3-胺丙基)四甲基二矽氧烷(信越化學公司製) B12:4,9-二癸烷-1,12-二胺(BASF公司製) D2000:聚氧丙烯二胺2000(BASF公司製) BAPP:2,2雙-(4-(4-胺苯氧基)苯基)丙烷(和歌山精化工業公司製) 2.黏著薄膜之評價 (1)最大應力、最大荷重延伸度、及拉伸斷裂延伸度 使用由B階段狀態之黏著薄膜所切出之長方形試驗片(寬5mm、長度50mm)並進行拉伸試驗。由所得之應力-歪斜曲線,根據下述計算式求出最大應力、最大荷重延伸度、及拉伸斷裂延伸度。拉伸試驗為使用拉伸試驗機(SIMADZU製100N Autograph、AGS-100NH),於25℃之氛圍氣中,以試驗開始時之卡盤間距離30mm、拉伸速度5mm/min之條件進行。 最大應力(Pa)=最大荷重(N)/試料之剖面積(m2) 最大荷重時的延伸度(%)=[(最大荷重中的卡盤間長度(mm)-30)/30]×100 拉伸斷裂延伸度(%)=[(斷裂時之卡盤間長度(mm)-30)/30]×100 圖11為示出實施例1、圖12為示出比較例1之黏著薄膜之應力-歪斜曲線圖。圖中,延伸度(mm)=卡盤間長度-30。由對應於最大荷重Pmax之延伸度算出最大荷重延伸度,並且由試驗片斷裂後,荷重落至0為止之時刻的延伸度E,算出拉伸斷裂延伸度。 (2)晶圓貼附溫度 使用加溫至指定溫度的熱輥層合器(0.3m/分鐘、0.3MPa)將寬10mm之黏著薄膜與半導體晶圓貼合,其後,將黏著薄膜於25℃之氛圍氣中,以拉伸角度90°、拉伸速度50mm/分鐘拉剝黏著薄膜,進行剝離試驗,求出剝離強度。剝離試驗為使用TOYOBALDWIN製UTM-4-100型萬能拉伸機進行。將熱輥層合器的設定溫度由40℃以各10℃升溫,取得20N/m以上之剝離強度時的熱輥層合器溫度中,將最低溫度視為晶圓貼附溫度。 (3)玻璃轉化溫度 由180℃加熱1小時所硬化的黏著薄膜中,切出約4×20mm大小的試料。對於此試料,使用精工電子製TMA 120,以拉伸、升溫速度:5℃/分鐘、試料測定長度:10mm之條件測定試料的變位量,取得顯示變位量與溫度關係的曲線。由所得之曲線求出玻璃轉化溫度。圖13為示出變位量與溫度之關係之一例圖。如圖13所示般,拉出2根連接玻璃態化溫度前後之部分曲線的接線,並以其交點的溫度視為玻璃態化溫度(Tg)。 (4)室溫黏著強度 B階段狀態之黏著薄膜的黏著強度,使用Resca股份公司製Tacking試驗機,以JISZ0237-1991記載之方法(探針直徑5.1mm、拉剝速度10mm/s、接觸荷重100gf/cm2、接觸時間1s),以25℃測定。由作業性之觀點而言,於25℃下之黏著強度期望為未達5gf。 (5)剝離強度(晶片拉剝強度) 將厚度400μm之矽晶圓由其表側部分切斷至250μm之深度為止,並於裏側方向加力切割,準備出周邊部形成寬150μm爪之4mm×2mm的矽晶片。於此矽晶片與42合金鉛框之間,夾住切出4mm×2mm大小的黏著薄膜。於全體加以200gf的荷重並以160℃壓黏5秒鐘,經由180℃60分鐘的加熱令黏著薄膜進行後硬化。其次,260℃、20秒鐘加熱時的晶片拉剝強度,使用圖14所示之改良推挽規(push-pull gauge)的測定裝置15測定。測定裝置15為具備熱盤14、和該熱盤14上所載置的型板墊13、和推挽規12。於測定裝置15的型板墊13上載置試料,並於矽晶片的爪上拉掛推挽規12,進行晶片拉剝強度的測定。此剝離強度的測定為對於初期、及85℃、85%RH之環境下放置48小時之施以高溫高濕處理後的樣品進行。若根據此測定,可測定黏著薄膜的面黏著強度。此數值愈高則愈難發生迴流龜裂。 (6)耐迴流龜裂性 將切斷成5mm正方的矽晶片及具有貼附至此之黏著薄膜的附黏著薄膜矽晶片,接合至作為基板之聚醯亞胺薄膜(厚度25μm)之表面形成配線的配線基板。其次,於此矽晶片上,接合5mm正方之另外的附黏著薄膜矽晶片。 對於所得之樣品10個,通過表面溫度為到達260℃,且設定成此溫度為保持20秒鐘的IR迴流爐,其後,放置於室溫(25℃)進行冷卻之處理重複施行2次。以目視及超音波顯微鏡觀察處理後樣品中的龜裂,確認基板/晶片間及晶片/晶片間龜裂的發生狀態。根據觀察效果,以下列基準評價耐迴流龜裂性。 A:全部樣品未察見龜裂發生。 C:1個以上之樣品發生龜裂。 (7)斷裂性、晶片龜裂及毛邊 將上述實施例或比較例所製作之黏著薄膜貼合至半導體晶圓,並根據以下之「完全切斷」、「部分切斷」或「雷射切割」之方法將半導體晶圓分割成半導體晶片,確認此時黏著薄膜的斷裂性、晶片龜裂及毛邊的發生狀態。任一種方法均使用氯乙烯系膠帶(厚度90μm)作為切割膠帶。 完全切斷 使用熱輥層合器(JCM公司製DM-300H、0.3m/分鐘、0.3MPa),以表1之晶圓貼附溫度將各個黏著薄膜貼附至50μm厚的半導體晶圓。其次,以熱板溫度80℃之條件將切割膠帶層合至黏著薄膜上,製作切割樣品。於切割膠帶周邊部貼附不銹鋼製之環,使用DISCO公司製DFD-6361將切割膠帶切斷。切斷為以1片刀刃完成加工之單一切割方式、刀刃為以NBC-ZH104F-SE 27HDBB、刀刃迴轉數45,000rpm、切斷速度50mm/s之條件進行。切斷時之刀刃高度(切口深度)為完完全切斷斷黏著薄膜之高度80μm。接著,以固定環之狀態,經由膨脹裝置拉伸切割膠帶。膨脹速度為10mm/s。膨脹量為3mm。 部分切斷 除了令刀刃高度(切口深度),於晶粒黏著(Die Bonding)薄膜中10μm厚度部分未被切斷且殘留高度為100μm以外,以上述完全切斷相同之條件進行試驗。 雷射切割 對半導體晶圓(厚度50μm)照射雷射,於其內部沿著半導體晶片分隔線形成改質部。其後,以完全切斷情況相同之手續,依序貼附黏著薄膜及切割膠帶,並於切割膠帶的外周部貼附不銹鋼製之環。接著,以膨脹裝置,於環固定的狀態下將切割膠帶拉伸。膨脹速度為30mm/s、膨脹量為15mm。 斷裂性 將切割膠帶拉伸後,以光學顯微鏡觀察黏著薄膜是否斷裂,於切斷面的全長中,求出完全斷裂部分的長度比率,並以下列基準分類此比率,評價斷裂性。另外,完全切斷之情況為以刀刃將黏著薄膜以切割刀切斷,故無法進行斷裂性的評價。 AA:98%以上 A:90%以上 B:50%以上未達90% C:未達50% 晶片龜裂 將切割膠帶拉伸後,以光學顯微鏡觀察晶片龜裂的發生狀態。求出半導體晶片之黏著薄膜反側面中發生的晶片龜裂長度,並以下列基準分類晶片龜裂的長度,評價晶片龜裂的發生狀態。 AA:未達5μm A:5μm以上未達10μm B:10以上未達25μm C:25μm以上 毛邊 將切割膠帶拉伸後,將半導體晶片與黏著薄膜同持抽起。以光學顯微鏡觀察所抽起之附黏著薄膜之半導體晶片的端面,確認毛邊的發生狀態。 AA:毛邊長度為未達20μm A:毛邊長度為20μm以上未達40μm B:毛邊長度為40以上未達100μm C:毛邊長度為100μm以上 使用含有50%質量%4,4’-氧鄰苯二甲酸二酐之四羧酸二酐、和含有30質量%以上1,3-雙(3-胺丙基)四甲基二矽氧烷之二胺反應所得之聚醯亞胺樹脂的實施例1~4黏著薄膜,均於100℃以下可貼附至半導體晶圓。因此,實施例1~4之黏著薄膜均顯示良好的斷裂性。更且,實施例1~4之黏著薄膜為耐迴流龜裂性方面亦優良,且於室溫下具有適度的黏著強度,故作業性方面亦優良。 使用未利用4,4’-氧鄰苯二甲酸二酐所得之聚醯亞胺樹脂的比較例1~3黏著薄膜,於100℃以下不能貼附至半導體晶圓,又,未顯示充分的斷裂性。比較例6之黏著薄膜雖使用與實施例3同樣之聚醯亞胺樹脂,但因填充物的含量多,故於100℃以下無法貼附至半導體晶圓。比較例3之黏著薄膜雖然部分切斷時的斷裂性為良好,但雷射切割時的斷裂性並不充分。又,比較例3之黏著薄膜為於耐迴流龜裂性試驗中,於基板/晶片發生龜裂。 使用未利用4,4’-氧鄰苯二甲酸二酐所得之聚醯亞胺樹脂的比較例4黏著薄膜,雖於100℃以下可貼附至半導體晶圓,但因玻璃轉化溫度低,故於室溫下的黏著強度過高,阻礙作業性。又,比較例4之黏著薄膜於斷裂性方面亦不充分。 使用與比較例4同樣之聚醯亞胺樹脂,且增加填充物含量之比較例5的黏著薄膜,於100℃以下之溫度無法貼附至半導體晶圓,又,未顯示出充分的斷裂性。又,於耐迴流龜裂性試驗中,於基板/晶片發生龜裂。 使用與實施例3同樣之聚醯亞胺樹脂所得之比較例6的黏著薄膜,雖顯示出良好的斷裂性,但因填充物的含量多,故於100℃以下無法貼附至半導體晶圓。又,於耐迴流龜裂性試驗中,於基板/晶片發生龜裂。 如上述之實驗結果所闡明般,確認可取得於100℃以下可貼附至半導體晶圓之同時,可充分抑制晶片龜裂和膨脹的發生,並且由半導體晶圓以良好產率取得半導體晶片。 1‧‧‧半導體晶圓 1a‧‧‧改質部 2‧‧‧半導體用黏著薄膜 3‧‧‧切割膠帶 4‧‧‧切割刀 7‧‧‧附配線之基材 8‧‧‧接黏金屬絲 9‧‧‧封合樹脂層 10、10a、10b‧‧‧半導體晶片 20‧‧‧層合體 40‧‧‧切口 50‧‧‧分割預定線 100‧‧‧半導體裝置 圖1為示出第一實施形態之半導體晶片之製造方法的端面圖。 圖2為示出第一實施形態之半導體晶片之製造方法的端面圖。 圖3為示出第一實施形態之半導體晶片之製造方法的端面圖。 圖4為示出第一實施形態之半導體晶片之製造方法的端面圖。 圖5為示出第一實施形態之半導體晶片之製造方法的端面圖。 圖6為示出第二實施形態之半導體晶片之製造方法的端面圖。 圖7為示出第二實施形態之半導體晶片之製造方法的端面圖。 圖8為示出第二實施形態之半導體晶片之製造方法的端面圖。 圖9為示出第二實施形態之半導體晶片之製造方法的端面圖。 圖10為示出半導體裝置之一實施形態的剖面圖。 圖11為示出半導體用黏著薄膜之拉伸試驗中之應力-歪斜曲線圖。 圖12為示出半導體用黏著薄膜之拉伸試驗中之應力-歪斜曲線圖。 圖13為示出由變位量和溫度之關係求出玻璃轉化溫度之方法圖。 圖14為示出用以進行晶片拉剝試驗之測定裝置的模式圖。
权利要求:
Claims (6) [1] 一種半導體用黏著薄膜,其係含有藉由四羧酸二酐與二胺之反應所得之聚醯亞胺樹脂,且可於100℃以下貼附於半導體晶圓,其中上述四羧酸二酐係含有全體比例為50質量%以上之以下述化學式(I)所示之4,4’-氧鄰苯二甲酸二酐,而上述二胺係含有全體比例為70質量%以上之以下述一般式(II)所示之矽氧烷二胺, 〔式(II)中,R表示碳數1~5之烷基、碳數1~5之烷氧基、苯基或苯氧基,且同一分子中之複數的R可相同或相異,n及m分別獨立地表示1~3之整數〕。 [2] 如申請專利範圍第1項之半導體用黏著薄膜,其中前述聚醯亞胺樹脂之玻璃轉化溫度為30℃以上80℃以下。 [3] 如申請專利範圍第1或2項之半導體用黏著薄膜,其中更含有熱硬化性成分及填充物,而前述填充物之含量,對該當半導體用黏著薄膜之質量而言,係未達30質量%。 [4] 一種複合薄片,其係具備如申請專利範圍第1~3項中任一項之半導體用黏著薄膜、與層合於該半導體用黏著薄膜之一側面上之切割膠帶。 [5] 一種半導體晶片的製造方法,其係具備下述步驟,準備一層合體之步驟:其係依半導體晶圓、申請專利範圍第1~3項中任一項之半導體用黏著薄膜及切割膠帶之順序層合,且於前述半導體晶圓被分割為複數的半導體晶片的同時,以前述半導體用黏著薄膜的厚度方向之至少一部分不被切斷而殘留之方式,由前述半導體晶圓側形成切口、分割步驟:其係藉由使前述切割膠帶於與前述複數的半導體晶片互為遠離之方向上進行拉伸,而沿著前述切口分割前述半導體用黏著薄膜。 [6] 一種半導體晶片的製造方法,其係具備下述步驟,準備一層合體之步驟:其係依半導體晶圓、如申請專利範圍第1~3項中任一項之半導體用黏著薄膜及切割膠帶之順序層合,且沿著將前述半導體晶圓劃分為複數的半導體晶片之線,藉由雷射加工而於前述半導體晶圓上形成改質部、分割步驟:其係藉由使前述切割膠帶於與前述複數的半導體晶片互為遠離之方向上進行拉伸,而於分割前述半導體晶圓為前述複數的半導體晶片之同時,沿著前述改質部分割前述半導體用黏著薄膜。
类似技术:
公开号 | 公开日 | 专利标题 TWI395800B|2013-05-11|An adhesive film for a semiconductor, a composite sheet, and a method of manufacturing the semiconductor wafer using the same KR101148426B1|2012-05-25|필름상 접착제, 및 그 제조방법, 및 접착시트 및 반도체 장치 JP5343450B2|2013-11-13|半導体素子固定用接着フィルム及び接着シート JP5488001B2|2014-05-14|接着剤付半導体チップの製造方法及び半導体装置の製造方法 JP4839629B2|2011-12-21|フィルム状接着剤、接着シート及びそれを使用した半導体装置 JP2006241174A|2006-09-14|ダイボンディング用フィルム状接着剤及びこれを用いた接着シート、並びに半導体装置。 JP4168368B2|2008-10-22|接着シートならびに半導体装置およびその製造方法 JP2010059387A|2010-03-18|接着剤組成物、フィルム状接着剤、接着シート及び半導体装置 JP5374983B2|2013-12-25|半導体装置の製造方法 JP5374972B2|2013-12-25|接着フィルム、接着シート、半導体装置及び半導体装置の製造方法 JP5374969B2|2013-12-25|接着フィルム、接着シート、半導体装置及び半導体装置の製造方法 JP5374982B2|2013-12-25|半導体装置の製造方法 JP5365113B2|2013-12-11|半導体装置の製造方法 JP5439818B2|2014-03-12|接着剤組成物、フィルム状接着剤、接着シート及び半導体装置 JP5374970B2|2013-12-25|半導体装置の製造方法 CN101641766A|2010-02-03|半导体用粘接膜、复合片及使用它们的半导体芯片的制造方法 JP4314554B2|2009-08-19|接着シート及び半導体装置の製造方法 JP5499459B2|2014-05-21|半導体用接着フィルム JP2011155195A|2011-08-11|接着剤付半導体チップの製造方法及び半導体装置の製造方法 JP2009263615A|2009-11-12|接着フィルム、接着フィルムの製造方法、接着シート、半導体装置及び半導体装置の製造方法 JP5093026B2|2012-12-05|接着シートならびに半導体装置およびその製造方法 JP2009286996A|2009-12-10|接着フィルム、接着シート、半導体装置及び半導体装置の製造方法
同族专利:
公开号 | 公开日 CN102134451A|2011-07-27| EP2139027A4|2012-08-08| TW200907007A|2009-02-16| TWI395800B|2013-05-11| JP2012188673A|2012-10-04| KR20090126250A|2009-12-08| CN102709201A|2012-10-03| EP2139027A1|2009-12-30| KR20110126186A|2011-11-22| JPWO2008126717A1|2010-07-22| KR101166615B1|2012-07-18| US8404564B2|2013-03-26| US20100112783A1|2010-05-06| WO2008126717A1|2008-10-23|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 CN104668782A|2013-12-02|2015-06-03|光环科技股份有限公司|半导体晶片的激光切割方法|US5536584A|1992-01-31|1996-07-16|Hitachi, Ltd.|Polyimide precursor, polyimide and metalization structure using said polyimide| JPH1036507A|1996-07-24|1998-02-10|Sumitomo Bakelite Co Ltd|ポリイミド樹脂及び接着剤用樹脂ワニス| KR100574312B1|1998-08-28|2006-04-27|도레이 가부시끼가이샤|착색 고분자 박막, 칼라 필터 및 액정 표시 장치| US6887580B2|2000-02-01|2005-05-03|Nippon Steel Chemical Co., Ltd.|Adhesive polyimide resin and adhesive laminate| JP3408805B2|2000-09-13|2003-05-19|浜松ホトニクス株式会社|切断起点領域形成方法及び加工対象物切断方法| JP3773845B2|2000-12-29|2006-05-10|三星電子株式会社|ポジティブ型感光性ポリイミド前駆体およびこれを含む組成物| KR100589067B1|2001-10-30|2006-06-14|가부시키가이샤 가네카|감광성 수지 조성물, 이것을 이용한 감광성 필름 및 적층체| JP4358502B2|2002-03-12|2009-11-04|浜松ホトニクス株式会社|半導体基板の切断方法| JP4312419B2|2002-05-09|2009-08-12|リンテック株式会社|半導体ウエハの加工方法| MY142246A|2003-06-10|2010-11-15|Hitachi Chemical Co Ltd|Adhesive film and process for preparing the same as well as adhesive sheet and semiconductor device| JP2004210805A|2002-11-14|2004-07-29|Hitachi Chem Co Ltd|接着フィルム及びその用途| JP2004277618A|2003-03-18|2004-10-07|Sumitomo Bakelite Co Ltd|ポリイミド樹脂及び半導体接着テープ| WO2004092838A1|2003-04-15|2004-10-28|Kaneka Corporation|水系現像が可能な感光性樹脂組成物および感光性ドライフィルムレジスト、並びにその利用| CN101392159B|2003-06-06|2012-10-03|日立化成工业株式会社|粘合片、与切割胶带一体化的粘合片以及半导体的制造方法| KR101215728B1|2003-06-06|2012-12-26|히다치 가세고교 가부시끼가이샤|반도체 장치의 제조방법| US20070134846A1|2003-10-07|2007-06-14|Nagase & Co. Ltd.|Electronic member fabricating method and ic chip with adhesive material| JP2006203133A|2005-01-24|2006-08-03|Lintec Corp|チップ体の製造方法、デバイスの製造方法およびチップ体固着用粘接着シート| TWI387623B|2005-06-20|2013-03-01|Manac Inc|反應性單體及含有其的樹脂組成物| US7843045B2|2005-07-20|2010-11-30|Hitachi Chemical Co., Ltd.|Thermoplastic resin composition for semiconductor, adhesion film, lead frame, and semiconductor device using the same, and method of producing semiconductor device| JP2007056167A|2005-08-25|2007-03-08|Hitachi Chem Co Ltd|接着フィルム及びこれを用いた半導体装置| JP5428169B2|2007-03-05|2014-02-26|日立化成株式会社|半導体装置の製造方法| CN102134451A|2007-04-06|2011-07-27|日立化成工业株式会社|半导体用粘接膜、复合片及使用它们的半导体芯片的制造方法| EP2157135A4|2007-05-21|2011-07-20|Ntn Toyo Bearing Co Ltd|RESIN COMPOSITION FOR SLIDING ELEMENTS AND ROLLER BEARINGS| JP5176076B2|2008-01-16|2013-04-03|日立化成株式会社|感光性接着剤組成物、フィルム状接着剤、接着シート、接着剤パターン、接着剤層付半導体ウェハ、半導体装置、及び、半導体装置の製造方法| KR20120024723A|2009-06-30|2012-03-14|히다치 가세고교 가부시끼가이샤|감광성 접착제, 및 그것을 이용한 필름상 접착제, 접착 시트, 접착제 패턴, 접착제층 부착 반도체 웨이퍼 및 반도체 장치|CN102134451A|2007-04-06|2011-07-27|日立化成工业株式会社|半导体用粘接膜、复合片及使用它们的半导体芯片的制造方法| CN101821834A|2007-10-09|2010-09-01|日立化成工业株式会社|带粘接膜半导体芯片的制造方法及用于该制造方法的半导体用粘接膜、以及半导体装置的制造方法| US20100003119A1|2008-07-07|2010-01-07|Disco Corporation|Method for picking up device attached with adhesive tape| JP5545817B2|2010-01-29|2014-07-09|新日鉄住金化学株式会社|接着剤樹脂組成物、カバーレイフィルム及び回路基板| JP2012069919A|2010-08-25|2012-04-05|Toshiba Corp|半導体装置の製造方法| WO2013005470A1|2011-07-01|2013-01-10|古河電気工業株式会社|接着フィルム、並びにダイシングダイボンディングフィルム及びそれを用いた半導体加工方法| JP5919087B2|2012-05-10|2016-05-18|ルネサスエレクトロニクス株式会社|半導体装置の製造方法および半導体装置| CN103066018A|2013-01-05|2013-04-24|合肥彩虹蓝光科技有限公司|一种半导体单元的分离方法| CN104647615A|2013-11-15|2015-05-27|台湾暹劲股份有限公司|晶圆切割装置及其切割方法| CN103579106B|2013-11-21|2015-10-14|中国电子科技集团公司第四十一研究所|一种适用于小尺寸工件的划切方法|
法律状态:
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 JP2007100480||2007-04-06|| JP2007238395||2007-09-13|| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|